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A Lagrangian stochastic model of two-point displacements which includes explicitly 
the effects of molecular diffusion and viscosity is developed from the marked-particle 
model of Durbin (1980) and used to study the influence of these molecular processes 
on scalar fluctuations in stationary homogeneous turbulence. It is shown that for the 
homogeneous scalar field resulting from a uniform-gradient source distribution or for 
a cloud produced by a source large compared with the Kolmogorov microscale, the 
variance of scalar fluctuations 8'2 is independent of the molecular diffusivity for large 
Reynolds number Re provided that the Prandtl number Pr is finite. In these 
circumstances 8'2 can be calculated from marked-particle-pair statistics. 

For source sizes that are not large compared with the Kolmogorov microscale, 8'2 
depends explicitly on the effect of molecular diffusion under the action of the straining 
motion on the Kolmogorov microscale. The model is consistent with Saffman's (1960) 
calculation for the mean concentration near such a small source and with Townsend's 
(1951) measurements on small heat spots. For the fluctuation field in stationary 
homogeneous turbulence these small-scale processes remain important far from the 
source. 

It is shown that dissipation of 8'2 is intimately connected to the process of relative 
dispersion and that the non-dissipative model for 8'2 discussed by Corrsin (1952) and 
Chatwin & Sullivan (1979) corresponds to the point-sample, infinite-& limit of the 
two-point theory. 

The two-point model is also used to examine the effect of instrumental averaging 
on 8'2. For finite Pr, the reduction in 8'2 due to a fixed sampling volume is eventually 
negligible because the lengthscale of 8'2 grows with time. For infinite Pr, the 
linear-strain field of the turbulence on the Kolmogorov microscale generates an 
increasingly fine-scale structure in the scalar field. Then a finite sampling volume 
reduces 8'2 but not as much as the effect of reducing Pr to a finite value. A finite 
sampling volume and infinite Pr is not necessarily equivalent to a finite value of Pr 
and a point sample. 

Timescales for important stages in the development of the scalar field in a cloud 
or downwind of a continuous source (for example, the onset of dissipation or the stage 
at which fluctuations are dominated by internal structure or 'streakiness' within the 
cloud rather than bulk motion or 'meandering') have been estimated. For small 
sources and large Re these timescales are significantly less than the integral timescale 
t,. Many real flows evolve on the timescale t ,  so that the present results for stationary 
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homogeneous turbulence should apply to such flows for small sources and large Re, 
a situation typical of the atmosphere. 

1. Introduction 
This paper deals with the dispersion and mixing of a passive scalar quantity (e.g. 

heat or matter) in stationary homogeneous turbulence. Our reasons for limiting 
attention to such an idealized flow field are two-fold. First there are a number of exact 
kinematic results available with which to compare our model results. Secondly, such 
a flow is of practical interest since in a range of real problems (e.g. dispersion from 
an elevated source in a boundary layer; dispersion from a line source in decaying grid 
turbulence or grid turbulence with a mean shear) the initial stages of the evolution 
of the scalar field proceed as in stationary homogeneous turbulence. 

It follows from Saffman’s (1960) analysis of the combined action of molecular and 
turbulent diffusion that the mean concentration 8 resulting from the release of a small 
quantity of contaminant into a turbulent flow is determined by the turbulent velocity 
field alone for times much beyond Pe-’ t,,  where the Peclet number Pe = uw L/K, is 
the ratio of the turbulent and molecular diffusivities and uw, L and t, = a w / L  are 
turbulence velocity, length and Lagrangian timescales respectively. However, 
Saffman’s (1960) analysis is valid only up to times of O(Re-:t,), where the Reynolds 
number Re = uw L/v ,  and v is the kinematic viscosity. A t  larger times after release, 
there is no precise estimate for the order of magnitude of the effect of molecular 
diffusion, but it is found experimentally that when Pe % 1 the mean field can be 
calculated accurately by considering the motion of marked fluid particles which follow 
the motion of the fluid continuum and conserve the scalar quantity. (Simulation 
of molecular diffusion by a small-scale random walk confirms this hypothesis 
(Drummond, Duane & Horgan, 1984; Stapountzis et al. 1986)). 

However, the variance of scalar fluctuations, denoted by 8’2 = @-8’ is funda- 
mentally influenced by molecular diffusion even when Pe % 1. The magnitude of 8’2 is 
controlled by the rate €8 a t  which molecular diffusion dissipates scalar fluctuations 
by reducing local scalar gradients. E@ is given by 

€o = 2K(V8’)2, 

where the variance of the temperature gradient (Ve’)2 is controlled by molecular 
diffusion and by the smallest scales of the velocity field. These in turn are controlled 
in part by v so at first sight 8’2 and €8 a p p e r  to depend on the magnitudes of K and v .  
However, in many cases the values of f2  and co only depend on the fact that K 

and v are not actually zero. For example, when no external lengthscale is imposed 
on the scalar field (i.e. scalar fluctuations are produced by homogeneous turbulence 
working on a uniform-gradient mean scalar field) the fluctuation field is also 
homogeneous and for large Pe and Reynolds number the scales on which fluctuations 
are produced are sufficiently far removed from the scales on which dissipation occurs 
for similarity scaling arguments to be used (Batchelor 1959 ; Batchelor, Howells & 
Townsend 1959). Then €8 and 8’2 are independent of K and v and 

where Lo is a lengthscale determined by the large-scale properties of the turbulence. 
However, in many cases of practical interest an external lengthscale is imposed on 

the scalar field by a finite source lengthscale u,, (for example, the radius of a chimney 
emitting effluent). Then the scale ratio uo/L  influences the evolution of the scalar field. 
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If cro is O(L) or greater the scaling arguments referred to above, and hence (1.2), should 
still apply. However a. may be comparable with the microscales on which molecular 
processes act. (For velocity fluctuations the Kolmogorov microscale is 
r]  = ( v3/e)f - Re-f L, where E is the rate of dissipation of turbulent kinetic energy per 
unit mass, and for scalar fluctuations there are different microscales depending on 
the value of the Prandtl number Pr = V / K .  For Pr < 1 this is the diffusion cut-off 
length, A, = ( K ~ / E ) ~  - Pe-0 L and when Pr > 1 the diffusive/straining microscale is 
A, = ( K ~ v / E ?  - Re-fPe*L (Townsend 1976, p. 346)). Then, initially at least, both 
and €8 depend explicitly on K and v. The main aim of this paper is to examine the 
extent to which ao/L, K and v explicitly influence the evolution of the &field. 

Exact results are available for the case K = 0 (or more particularly, €8 = 0). It can 
be shown by Eulerian methods (Chatwin & Sullivan 1979) or from marked-particle 
statistics (Corrsin 1952; Durbin 1980) that a cloud of material dispersing in 
incompressible turbulence conserves O2 d V (where the integral is over all space) and 
that at  large time 

where a(t) is a measure of the size of the cloud. The fact that this limit does not accord 
with observation strongly suggests that molecular diffusion cannot be neglected. 

The only exact solutions for the evolution of a scalar field under the combined 
action of molecular diffusion and turbulence are for very short times ( t  4 tk = ( v / E ) ~ )  
and for very small initial volumes (ao < r ] )  when the turbulence can be approximated 
by a random linear-strain field (Townsend 1954; Saffman 1960; Chatwin & Sullivan 
1979). A recent extension using path integral techniques has been developed by 
Drummond (1982). All other calculations involve some assumptions about the joint 
statistics of the velocities of fluid elements and the contaminant molecules. We seek 
here to use such an approximate calculation and first briefly review the range of 
possible approaches. 

Chatwin & Sullivan (1979) suggested that the linear-strain results may be valid for 
t % t k  and a % r]  with the result that ultimately (for a diffusing cloud) 

where n lies between 1 and 2. This is unrealistic because the linear-strain model takes 
no account of the effect of the energetic eddies, which on scales larger than r ]  fold 
back onto themselves the strands and sheets of contaminant drawn out by the strain 
field. This is an essential feature of turbulent mixing which in practice increases the 
rate of dissipation sufficiently to prevent the divergent growth of fluctuations evident 
in (1.4). 

Quite different results for the change of 8'2/a2 were obtained from calculations of 
the motion of pairs of marked fluid particles. Even then differences were found 
depending on the assumptions about these relative motions. Durbin (1980) assumed 
(following Richardson 1926) that pairs of particles separate at a rate that is a random 
function but dependent on their instantaneous distance apart. For a planar cloud this 
model implies that, as t - t  00, 

j F d V + O  ( 1 . 5 ~ )  

and (1.5b) 
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The model accounts for molecular dissipation in the mixing of pairs of fluid elements 
with different concentrations; this is implicit in the result ( 1 . 5 ~ ) .  The probability 
distribution of particle spacing is highly non-Gaussian and leads to  contaminant 
clouds having a very streaky structure. 

On the other hand if it is assumed, following Batchelor (1952), that the particles 
move apart a t  a rate dependent on the average distance apart of all particles in the 
ensemble at that time, the distribution of pair separations is Gaussian and Sawford 
( 1 9 8 3 ~ )  has shown that this implies, as t + 00, 

where p is the correlation between the positions of the two particles. Thomson's 
(1985) recent extension of Durbin's model includes a mean (as well as fluctuating) 
separation velocity and also predicts that 8'2/g2 vanishes like (1.6). These models are 
readily applied to an  arbitrary scalar source distribution. 

Various approaches ranging from the heuristic treatments of Richardson (1926) and 
Batchelor (1952) to  the modern two-point turbulence closure theories (Lundgren 
1981; Herring et al. 1982; Larchevcque & Lesieur 1981) lead to a diffusion equation 
for the pair separation. The two-point closure models also give an equation for the 
pair diffusivity. This approach has been restricted to decaying homogeneous scalar 
fields and has not yet been applied to  the practical problems involving inhomogeneous 
scalar fields which are of interest here. Whenever scalar fluctuations are produced 
by mean-field gradients it is necessary also to consider centre-of-mass motions (in fact 
the full two-particle displacement probability density function (p.d.f.)). 

Various second-order Eulerian closures have been proposed in which the dissipation 
term is modelled explicitly in terms of the large-scale properties of the turbulence. 
Sykes, Lewellen & Parker (1984), used (1 .1)  and assumed appropriate similarity forms 
for L, while Newman, Launder & Lumley (19812 closed an  equation for ds,/dt. The 
model of Sykes et al. (1984) has been applied to the dispersion of a cloud and at large 
times predicts a balance between production and dissipation of 8'2 with 

i.e. at large time the relative intensity of fluctuation decreases as in the prediction 
(1.6). This is quite different to the predictions of steady or growing intensity in (1.5) 
or (1.3) respectively. A fundamental problem with second-order Eulerian closure 
schemes in general is that  each release must be treated separately and independently 
(Sykes et al. 1984; Lumley 1983), i.e. correlations between the 0' fields from separate 
releases cannot be properly accounted. 

The simplest approach to  calculating scalar fluctuations is that these are produced 
by the rapid mixing between fluid elements having the same concentration as the 
local mean concentration a distance L apart, so that 8'2 is proportional to the local 
mean concentration gradient, i.e. 8'2 N L2(V8)2. In  that case, for a planar cloud where - e = e, exp ( - 2 2 / 2 ~ 2 ( t ) ) ,  

This implies that  fluctuations vanish a t  the centre of the cloud where V8 = 0, a result 
not borne out by experiments (Warhaft 1984; Stapountzis et al. 1986). 

It is apparent from this brief review that existing theories for the evolution of scalar 
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fields in turbulence are based on many different assumptions and differ widely in their 
predictions for the asymptotic level of fluctuations. The experimental evidence does 
not conclusively distinguish between these theories because homogeneous turbulence 
decays and the scale of turbulence increases. Under these conditions the Lagrangian 
models and the Eulerian second-order closure model predict that 8'2/a2 asymptotes 
to a constant in agreement with the grid-turbulence experiments of Warhaft (1984) 
and Stapountzis et al. (1986). 

We have noted that Eulerian models implicitly or explicitly make assumptions 
about the scalar field as well as the velocity field whereas the Lagrangian models' 
assumptions concern the statistics of the displacement of marked particles and so are 
independent of the scalar field. The latter are thus potentially of greater generality 
provided that their uncertainties can be defined. 

Of the Lagrangian models, the non-Gaussian model of Durbin (1980) is the most 
successful so far in describing a number of wind-tunnel experiments for the evolution 
of 8'2 as a function of the lengthscale of the source, which affects 8'2 for times much 
- larger than the integral length scale L/a,  (Durbin 1982), and for the behaviour of 
8'2 behind a single line source (Stapountzis et al. (1986)). In addition, molecular 
processes can be explicitly included through a very natural extension to Durbin's 
model so that their effect on e0 is predicted. Durbin's (1980) model thus represents 
a useful starting point for the present study. 

Durbin (1980) justified the neglect of explicit molecular effects in his model by 
arguing that for Pr of 0(1), large Re and a. of O(L)  

(a)  small-scale structure of the scalar field is eliminated by molecular diffusion (and 
its interaction with the turbulence) so that large scales contain all the variance; 

(b )  these large scales are only weakly influenced (to O(Re-')) by molecular 
processes ; 

(c) turbulent mixing between pairsof marked particles with different concentrations 
- (caused by their separation at previous times) determines the rate of dissipation of 
t2, which is predicted without any detailed consideration of how microscale mixing 
occurs. 

These kinds of assumptions are also used (more or less explicitly) in the other 
analyses of scalar fluctuations already mentioned. By modelling the molecular 
processes at the smallest scale we are able to test explicitly these assumptions for 
a range of source size no and a range of Prandtl number Pr. The aim is to examine 
and justify the extent to which moments of the scalar field 8 can be calculated solely 
from the displacement of particles, an approach that has led to many interesting and 
practical results (Durbin 1980, 1982; Sawford 1983b). We focus our attention on 
answering the following questions, our answers to which are summarized in the 
concluding section. 

1. The exact results of Townsend (1954), Saffman (1960) and Chatwin & Sullivan 
(1979) show molecular effects to be explicitly important for small sources and small 
time. Are there circumstances when molecular effects persist for all time ? Under what 
circumstances is dissipation correctly accounted for by marked-particle statistics ? 

2. How does the intensity of scalar fluctuations in a cloud, s = [ P / 8 2 ] t ,  vary when 
t is large ? Does Durbin's model prediction that s is constant still hold when molecular 
processes are important? As well as being of practical importance, this is also a 
fundamental question since if s is of O( i ) ,  then local mixing-length arguments (based 
on a mixing length dependent on the turbulence scales) cannot describe the eventual 
development of clouds and plumes. It means that there is always almost uncontami- 
nated space between contaminated spaces. 
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3. Durbin’s model for marked-particle motions predicts uo/L to be an important 

parameter which influences the evolution of fluctuations even at large time. How is 
this prediction influenced by the explicit inclusion of molecular processes ? 

4. What is the importance of the fluid Prandtl number and how do the exact results 
available for K = 0 fit into the overall picture ? 

5. At what stages in the dispersion of a cloud does dissipation become important ? 
On what timescale does 8.a develop? We would like to relate these stages to the 
natural timescales of the turbulence, the integral timescale t ,  and the Kolmogorov 
timescale t,, to timescales that involve the imposed lengthscale ratio, uo/L, and to 
timescales over which the assumption of stationary homogeneous turbulence breaks 
down in real turbulent flows. 

6. What is the effect of instrumental averaging ? Durbin (1980) argued that it plays 
a similar role to molecular diffusion in eliminating fluctuations on small scales, 
although the justification for using the statistics of marked particles to calculate 8’2 
is less clear on these grounds since instrumental averaging achieves instantaneously 
what molecular diffusion does continuously. 

Answers to these questions represent the main focus of the present paper. 
However, in extending Durbin’s model we can also analyse in detail laboratory-scale 
turbulent-diffusion experiments where Re is insufficiently large to separate the 
energy-containing and dissipative scales of the turbulence and u, is of O(7).  This is 
considered by Stapountzis et al. (1986). 

2. Model development 
2.1. Statistical theory 

We consider dispersion from instantaneous plane sources in three-dimensional 
stationary homogeneous turbulence. Since the concept of a marked fluid particle is 
no longer useful once we explicitly include molecular diffusion we formulate our 
theory in terms of the statistics of the displacement of marked molecules that have 
a random thermal or Brownian motion relative to the fluid continuum. Expressions 
for moments of the scalar field are derived in the Appendix. They are formally 
identical to those derived for marked-particle statistics (see e.g. Monin & Yaglom 
1971, p. 589; Batchelor 1952). In  particular, the ensemble mean concentration is (with 
the restrictions on the source distribution noted above) 

03 - 
e ( z ,  t )  = P1(z’, 0 ;  Z, t )  S(Z’) dz’ (2.1) J L  

and the two-point covariance at  a single time is 

S(z) is the source distribution and PI and P2 are one- and two-point displacement 
p.d.f s. These equations can be interpreted in terms of dispersion of marked molecules 
either forwards in time from the source location (z’, 0) to the sampling location (z ,  t ) ,  
or backwards in time from the sampling location to the source. For incompressible 
flow, Lundgren (1981) and Egbert & Baker (1984) show these interpretations to be 
equivalent. Durbin’s (1980) model and the extension we develop here treat only one 
component of the velocity field. As in other diffusion analyses of one component of 
velocity, the incompressibility constraint is not considered. In that case Sawford 
(1984) has noted that the reverse-dispersion interpretation is appropriate since it deals 
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FIQURE 1.  Schematic showing two realizations of the trajectories of a pair of particles (a) forwards 
in time from given initial points xi, xi; (b)  backwards in time from given final points xl, x,; (c) 
trajectories from the given points xl, x2 after the time transformation (2.3). 

with the mass-specific concentration and so eliminates spurious concentration 
fluctuations which would otherwise (i.e. in the forward interpretation) arise from 
fluctuations in the total fluid density. This point is brought out more fully in the 
Appendix. Note that our notation in (2.1) and (2.2) emphasizes the reversed-dispersion 
interpretation. Thus P,(z;, z;, 0; zl, z2,,t) is the probability density that molecules at 
z1 and z2 at time t came from zi and z, at time t = 0. 

In  order to avoid the inconvenience of negative travel times as molecules disperse 
backwards in time, we take advantage of stationarity to write 

pl(z;,o; Z 1 , t )  = p,(z;,t; Z , , O )  

and P,(z;,Z;,o; Z l , Z , , t )  = P,(z;,z;,t; Z l , Z , , O ) .  (2.3) 

and thus we have the convenience of actually carrying out the dispersion calculation 
forwards in time. Note though that dispersion still commences at the field points z1 

13 FLM 165 



380 B. L.  Sawford and J .  C .  R. Hunt 
and zz  and finishes a t  the source points z; and 2;. The concept of reversed dispersion 
and the time transformation (2.3) are illustrated schematically in figure 1.  

Here we are most interested in the mean-square concentration field F(z, t)  a t  the 
point z and thus in the relative dispersion of molecules in the limit in which their 
initial separation vanishes. Formally 

- 
B’z(.z,t) = J-: JPz(z; ,z i , t ;  z,z,O)S(z;)S(~;)dz;dz;. (2.4) 

For a finite sampling volume the initial conditions on the dispersion process are 
different since the pair of molecules can then be anywhere within the sample volume 
a t  the measurement time. The effect of sample volume on 8’2 is discussed in $4. 

For later reference we also write here the corresponding result for Corrsin’s (1952) 
one-particle analysis 

O;(z, t)  = Pl(z’, t ;  z ,  0) fJ2(z’)  dz’, (2.5) I - 

where we have followed Durbin’s (1980) notation in the use of the subscript u. The 
relationship between this theory (which ignores dissipation of 8’2 and leads to the 
result (1.3)) and the two-point theory is discussed in $4. 

2.2. Molecular trajectories 

Equations (2.1) and (2.2) are exact formal expressions relating concentration 
statistics to  the displacement statistics of molecules. An exact specification of PI and 
Pz is, of course, not generally possible. Instead we propose to  develop a model for 
molecular trajectories from which the statistics Pl and P2, and hence 8 and 8’2, can 
be generated. 

Following Saffman (1960), at any instant the motion of a single marked molecule 
can be partitioned into a turbulent component (the motion of the fluid particle 
containing the molecule at that  time) and a random thermal or Brownian component. 
Since the timescale for molecular collisions is much smaller than the smallest 
timescale of the turbulence (the Kolmogorov timescale tk) the Brownian motion is 
random and independent of the turbulent motion, so that (for a single molecule) 

(2.6) 
where d W, is a Gaussian white-noise process with zero mean value and variance dt. 
Here wp is the velocity of the fluid particle containing the marked molecule a t  the 
given instant (i.e. the continuum velocity of the fluid) and we need to  simulate the 
statistics of those fluid particles along the trajectory of the marked molecule. 

Since molecular diffusion proceeds independently for a pair of molecules, by 
analogy with (2.4) we can write 

dz = wP dt 4- 1 / ( 2 ~ )  dw, 

dd = dd,+1/ (2~)dWi (2.7) 

and dZ= dC,+1/(2~)dW:, (2.8) 

where d W i  and d W: are independent Gaussian white-noise processes. For convenience, 
(2.7)and (2.8) have been written in ‘ separation ’ , A  = (zl - zz) /42 ,  and ‘ centre-of-mass ’, 
Z = (z,+z2)/1/2, coordinates. 

Equations (2.5) and (2.6) show how molecular diffusion enters our problem. In the 
following sections we review Durbin’s (1980) model for dA,/dt and dZp/dt for 
turbulence with an infinite inertial subrange and then describe our extension to 
include the effect of viscous dissipation on the turbulence. 
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2.3. Durbin's (1980) model for particle-pair trajectories 

Durbin (1980) ignored the molecular diffusion terms in (2.7) and (2.8) and modelled 
the fluid-particle motions in turbulence with an inertial subrange extending to 
infinitely large wavenumbers, i.e. he also ignored the effect of viscous dissipation on 
the turbulence. Dropping the subscript p, his model is 

and 

-- dA - & ( A )  U' 
dt 

dz 
dt 
- = [(2-R(A)]i u, 

(2.9) 

(2.10) 

where 2a, R(A) is an Eulerian structure function (Townsend 1976, p. 1 l), U' and U" 
are independent Uhlenbeck Ornstein (UO) random variables, and we now identify 
aw as the standard deviation of the w-component of the vertical velocity. The use 
of an Eulerian structure function in (2.9) and (2.10) implies an independence 
hypothesis similar to  that of Corrsin (1959) and is correct in both the small- and 
large-time limits. For convenience we refer to the normalized quantity R(A)  as the 
structure function. 

The UO process by which U' and u" are generated 

dU = - U / t L d t + a w ( ~ ) ' d W ~  (2.1 1) 

is a stationary Gaussian Markov process with mean zero, variance a; and correlation 
function 

(2.12) 

and thus introduces 'memory' to the turbulent motion of each particle through the 
Lagrangian integral timescale t,. The auto-correlation (2.12) has the appropriate 
Lagrangian inertial-range form, l-t/t, for t < t,, (Monin & Yaglom 1975, p. 359) 
and vanishes for t % t,. Thus each particle 'forgets' its original velocity after a time 
t B t,. The dispersion of the UO position variable, 5 = j: U'(t) dt' is 

and the particle positions, z1 and z2, are normally distributed with variance 

a;, = a;, = ae. 
For the Eulerian structure function, Durbin (1980) used 

(2.13) 

(2.14) 

R(A) = [ A 2 / ( 4 2 +  L2)]i, (2.15) 

where we now identify L as the Eulerian integral lengthscale. The form (2.5) is a simple 
interpolation between the inertial-subrange limit 

(2.16) 

(Monin & Yaglom 1975, p. 353) and the large-scale limit of vanishing correlation, 

R(A)  -tl (+) (2.17) 

13-2 
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In (2.6) the semi-empirical result (Townsend 1976, p. 61) 

E = 0.8Ub/L (2.18) 

has been used with C x 2% 
It is instructive to examine the influence of R(A) on the relative motion of the pair 

of particles. At small separation R(A) is small and so U / d t  tends to be small, 
reflecting the fact that on average small eddies, with only a small fraction of the 
turbulent energy, are responsible for separating the particles. Of course, in any 
realization the positions of large eddies can be such as to influence U/dt and cause 
the particles to separate more rapidly, and this possiblity is accommodated by the 
fact that u' is a random velocity which may be large for a particular realization. A t  
large separations where R(A) .+ 1, dA/dt is independent of A ,  the pair of particles move 
independently and turbulence on all scales influences the rate of separation of the 
particles. Thus the structure function determines the proportion of turbulence energy 
that is effective in separating particles, the residue being responsible for centre-of-mass 
motion as is clear from (2.10). One consequence of this filtering process is the 
accelerating nature of relative dispersion in the inertial range where the form (2.16) 
ensures the growth law - t3 (Batchelor 1950) which applies for t < t,. At larger 
time, t % t,, A z  % L2 so that R ( d ) +  1 for most pairs in the ensemble and Z'-+u& 
the single-particle dispersion. Equivalently the correlation between the positions of 
the two particles vanishes, 

- 

(2.19) 

In the context of scalar fluctuations an important property of (2.9) is that it is a 
nonlinear stochastic differential equation - the rate of separation depends on the 
instantaneous separation through the factor R(A). As a consequence A is not a 
Gaussian variable and, although at  large time the motion of the two particles is 
uncorrelated, their displacements are not independent. Sawford (1983~) showed that 
this property is essential for the maintenance of internal structure within a dispersing 
cloud. Although models in which dA/dt depends on (rather than A itself) can be 
formulated to give the inertial-range t3 law for (Sawford 1982; Lamb 1981) such 
models are Gaussian in the sense that P2 and the distribution of separations are 
Gaussian and, at large time, smooth-out structure in the scalar field leaving only those 
fluctuations due to bulk motion of the cloud. (Field observations by Jones (1982) 
demonstrate the highly intermittent and unsmoothed-out structure of plumes even 
when they are thin enough to meander around.) 

2.4. Viscous-dissipation-range structure 
Within the viscous-dissipation range, the Eulerian structure function has the form 
(Monin & Yaglom 1975, p. 353) 

(2.20) 

Here we extend Durbin's model to include the effect of viscous dissipation on the flow 
field by a modification to (2.15) to include the limit (2.20). In particular we replace 
(2.15) by 

R(A) = ( A2 )g(L)! 
72/a3 + A 2  L2 + A 2  ' 

(2.21) 



Scalar jluctwltions in homogeneous turbulence 383 

for A 4 7 this reduces to (2.20) with a constant of proportionality 1.16a2, while for 
d % 7 (2.15) is recovered. We deal with the numerical value of a in the next section. 

2.5. Comparison with exact results 

For small time such that - t << t, - Ref t,, U'(t) can be replaced by U'(0) in (2.7), where 
U'(0) is Gaussian with U'(0) = 0 and V2(0) = ut. If we also restrict attention to small 
initial separations, d(0) 4 7, then (2.7), (2.9) and (2.21) simplify to 

dd = a'AU'(O)dt+(2K)fdWi,  (2.22) 

where (2.23) 

Integrating (2.22) and averaging over both W i  and U'(0) we have 
- 
A 2 - A i  = 2Aia'2u&t2+2~t+$ca'2a~t3+O(t4) ,  (2.24) 

which agrees with Saffman's (1960) exact result for the dispersion of a spot of 
contaminant about its centre-of-mass, 

provided we choose 
~ 

1 
6ti' 

a2 = 0.128. 

a ' 2 g 2  = - 

or from (2.18) and (2.23) 

(2.25) 

(2.26) 

(2.27) 

Thus our model not only reproduces the leading-order terms for the growth of a puff 
due to the strain field acting over the finite initial separation and to molecular 
diffusion (the first two terms on the right-hand side of (2.25)) but also correctly 
represents the leading term due to the interaction of molecular diffusion with the 
turbulence (the third term). 

The numerical value (2.27) for a means that the dissipation correction in (2.21) is 
effective over separations considerably greater than q.  For example, R ( d )  is reduced 
by 10 % for A / q  = 11.  This is consistent with the measurements by Townsend (1951) 
which show that the linear-strain flow is applicable to about 157. 

2.6. Numerical details 
Pairs of molecular trajectories can be found by solving finite-difference versions of 
(2.7)-(2.11) with (2.21). In  the finite-difference approximation d Wl is replaced by 
( A t $ X i ,  where t = ndt and [xk] is a set of independent standard Gaussian random 
variables. As indicated in figure 1 ,  we solve for the source positions zi, zb given the 
field position. Having found z; and z; we assign probability densities S(z;), S(zi) that 
the molecules are contaminant species. In  this way S,(z;) and S,(zi) for the nth 
molecule pair can be found as a function of the time of measurement (travel time) 
and position. 

l N  

2N 1 
8 = - x s,(z;) + s,(z;), 

(2.28) 

(2.29) 

are computed a t  fixed t ,  where N is the total number of pair trajectories. 
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There are three constraints on the size of the time step based on the requirements 

dt/tL Q 1,  (2.30) 

dtlt, 4 ( ~ / L ) / W ) ?  (2.31) 

dt/t, Q uc/L. (2.32) 

Of these, (2.30) and (2.31) are the controlling conditions for t > t, and t < t, 
respectively. From (2.13) the condition (2.32) reduces to dt Q (ttL): for t 4 t, and 
hence is automatically satisfied. For t Q t ,  (2.32) reduces t o  dt Q t and so requires 
the obvious condition that the initial step size be small compared with the smallest 
time of interest. 

3. Distribution of separations 
The distribution of separations of molecules P(A, t ;  A, ,O)  is of interest because i t  

reflects directly the important effects of viscosity and molecular diffusion and also 
because i t  plays a central role in the theory of scalar fluctuations. Since the UO 
variables U' and gl are Gaussian random variables it follows from (2.9) that  (Durbin 
1980) 

where 

Because (3.1) contains both fixed ( d , , ~  and L)  and variable (ac) lengthscales 
P ( d ,  t ;  A,,  0) is not generally self-similar. However, with increasing time the expon- 
ential factor in (3.1) becomes negligibly different from unity on an ever-larger scale 
since uc increases with time. I n  particular, 

(27t):acP(A,t; A, ,O)+R-: (A)  (3.2) 

for vs 4 IG(A)-G(A,)l, i.e. with increasing time (271)?ucP(A,t; A, ,O)  approaches a 
time-independent asymptote on an ever-increasing scale. 

I n  order to  provide a reference against which to compare our present model we 
briefly summarize some important features of P(A, t ;  A,,  0) for Durbin's marked- 
particle model, i.e. (3.1) with the structure function (2.15). We noted in $2 that, for 
that  model, A is not normally distributed. Indeed on small scales, A Q L, (3.2) 
reduces to 

(211.):agP(A,t; A , , O ) +  - . (;)I (3.3) 

Compared with a normal distribution this weak singularity at the origin represents 
enhanced small-scale structure in the flow field and corresponds physically to  the 
cascade of energy to  small scales through the inertial subrange. Sawford (1983a) has 
shown that this non-Gaussian feature of P(A,  t ; A,,  0) is responsible for structure in 
the distribution of material within a dispersing cloud. 
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FIQURE 2. Small-scale asymptotic form of the separation p.d.f. for Durbin’s (1980) model (Re = 00)  

and the present model (Re = los). -, numerical computations averaged over t / t ,  = 2 , 5  and 10 
using N = 3 x 104 realizations. - - -, R-f(A) from (2.15) and (2.21). 

For the extended model developed in this paper, the structure function (2.21) 
results in the strong singularityt 

(2x)i rc P(A , t ; A,,  0) + (a Re4 A )  (3.4) 
within the dissipation subrange, A < 7. Ignoring for the moment the effects of 
molecular diffusion, we see from (3.4) that the effect of viscous dissipation is to 
enhance P(A, t ;  A,, 0) relative to the inertial-range form. The physical explanation 
is that viscosity greatly reduces the turbulent kinetic energy available to separate 
material points on these scales. Implications for the scalar field are discussed in detail 
in $4, but we anticipate that the increase in P(A,t;  A, ,O) for A < 7 corresponds to 
an increase in the small-scale structure of the scalar field as reflected, for example, 
by the Batchelor (1959) viscous-convective subrange of the scalar variance spectrum. 

We have not obtained an analytic expression for the effect of molecular diffusion 
on the distribution of separations and so draw on results from numerical integrations. 
From our understanding of the role of molecular diffusion in eliminating small-scale 
structure of the scalar field we expect molecular diffusion to smooth P(A, t ;  A,, 0) on 
small scales. This is confirmed by figure 2. There we have plotted (2x)i rz P(A, t ; 0 , O )  
over separations A < L for our new model a t  Re = los and Pe = lo3. For comparison 
we have also plotted results from integration of Durbin’s inertial-range model. In both 
cases these results represent the average over times t / t ,  = 2,5  and 10 for which 
(2.P r z P ( d ,  t ;  0 , O )  has essentially converged to its large-time asymptote on these 
scales. Statistics were accumulated over N = 3 x lo4 pair trajectories. Figure 2 also 
shows as broken lines R-i(d) corresponding to (2.15) and (2.21) and the Kolmogorov 
lengthscale for Re = los. For the inertial-range model the numerical results asymptote 
to R-i(A) in agreement with (3.2). For Re = lo3 the effect of viscous dissipation is 

t In fact the singular form (3.4) extends to arbitrarily small A with increasing time, but at any 
finite time the exponential factor in (3.1) with the structure function (2.21) cauaes P(A,  t ;  A,, 0) to 
vanish at the origin. 
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FIQURE 3. Effect of Re on the small-scale asymptotic form of the separation p.d.f. Numerical 
computations aa in figure 2. 

reflected through the R+(d) asymptote and the strong d-' singularity of (3.4) as an 
increase in (27r)4~7~ P(d,  t ;  0 , O )  for separations < 1Oq. For this Pr = 1 case, molecular 
diffusion smooths the A-' singularity for separations of O(7) .  Thus molecular 
diffusion and viscosity have opposing effects; viscosity enhances P(d ,  t ;  0,O) on small 
scales and diffusion smooths and reduces it. 

These effects are confined to scales < 1071, the range of influence of viscous dissipa- 
tion being determined by the constant a in (2.21). Thus as is illustrated in figure 3 
they occur on diminishing scales (relative to L) as 7 / L  decreases with increasing 
Re. For Pr = 1 we conclude that the inertial-range marked-particle model accurately 
represents P(d ,  t ;  0 , O )  at any arbitrarily small scale for sufficiently high Re. 

More generally the lengthscale for the interaction of molecular diffusion and the 
turbulent flow field (the conduction cutoff length) is a function of Pr, while the direct 
effect of viscous dissipation occurs on the scale 7 regardless of Pr. Thus, as is shown 
in figure 4, the balance between the competing effects of viscous dissipation and 
molecular diffusion is a function of Pr. Since A, 4 7 for large Pr the smoothing effect 
of molecular diffusion, although still effective in eliminating the d-' singularity for 
A < A,, does not balance the enhancement due to the linear-strain field for 
A, < d < 107. On the other hand A, B- 7 for small Pr. Then viscosity and the 
linear-strain field are not important and molecular diffusion interacts directly with 
the inertial-range eddies, smoothing the d-i singularity of (3.3). We see from figure 4 
that these effects diminish with increasing scale and, although they are more 
dramatic at small scales for Pr not of O(l) ,  it is clear that at fixed finite Pr the 
inertial-range model is again accurate to arbitrarily small scales at sufficiently 
high Re. 

In  summary, the most important findings of this section are: 
(i) small scales of P(d,  t ;  0,O) are strongly affected by molecular diffusion and 

viscosity and these effects are permanent ; 
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(ii) P(d ,  t ;  0 , O )  is strongly non-Gaussian for A < L;  
(iii) for fixed Re, molecular effects become more pronounced as Pr departs 

increasingly from unity ; 
(iv) Durbin’s inertial-range model accurately represents P(d ,  t ; 0,O) on arbitrarily 

small scales at sufficiently high Re (in the general framework of the approach used 
here). 

4. Concentration fluctuations 
4.1. Uniform-gradient source 

Although in this paper our interest is directed mainly to sources with a finite 
lengthscale we digress briefly to consider the case of fluctuations in a homogeneous 
scalar field resulting from a uniform-gradient source. This is a relatively simple 
problem which can be seen as a convenient test case for our model. With a source 
distribution of the form 

S(z) = mz, (4.1) 

G ( z , t )  = mz, 

i.e. the mean gradient is constant for all time. Taking z = 0 so that 8 = 0 we obtain 
from (2.4) 

it follows immediately from (2.1) that 

- . ,  
elz(o,t) = [P,(zl, z,, t ;  O , O ,  0) z1 z, dz, dz, 

m2 

( 4 . 2 ~ )  

(4.2b) 

( 4 . 2 ~ )  
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For convenience we have dropped the primes in (4.2) (but recall that we are 
considering dispersion from the measurement point to the source). 

Equations (4.2) are exact and do not depend on details of the trajectory model. 
It is illuminating to compare them with the Eulerian conservation equation which 
in the present case reduces to 

The first term on the right represents production of fluctuations from the mean field 
while the second represents dissipation by molecular diffusion. Since the diffusivity 
is !&;/at the production term in (4.3) is just m2 aui/at and so matches the first term 
on the right-hand side of (4 .2~ ) .  Comparison of ( 4 . 2 ~ )  and (4.3) then shows 

aZi? 
Be = 2K(v8')2 = m2 - 

at (4.4) 

This equation is also exact and is a clear demonstration of the connection between 
the relative dispersion of material points and the dissipation of scalar variance. It 
also shows how a marked-particle relative-dispersion model can predict non-zero 
dissipation. 

Corrsin's (1952) one-particle analysis ignores dissipation (p = 0) so that 

which is correct at small times, t << t , ,  when ui % p. A t  large times uz - ti and (4.5) 
predicts - 

(4.6) -- # y 7  t ,  - O(t)  ( t  g t L ) .  
m 

However in stationary homogeneous turbulence P + u; at large times so that 
dissipation and production balance and the evolution of 8'2 depends on the next-order 
terms. According to Durbin's inertial-range model these are of O(ti) ,  so that 

- 

= O(ti) ( t  g tL). 
8 ' 2  

m2 
- (4.7) 

The influence of molecular processes on these predictions has been examined 
through computations with our extended model. Figure 5 shows 8'2/m2 calculated 
over N = lo4 pair trajectories out to t / t ,  = 50. The heavy solid and broken lines 
correspond to calculations using the inertial-range model and to Corrsin's one-particle 
model respectively, while the faint lines represent various calculations with the 
present model. 

Despite the statistical uncertainty and the limited integration time of these 
calculations it is clear from figure 5 that the qualitative prediction (4.7) of Durbin's 
model is not dramatically altered by explicit inclusion of molecular diffusion and 
viscosity. Specifically, for Pr = 1 there is only about 10% change in 8'2/m2 for 
Re = lo3 and a calculation a t  Re = lo5 (not shown) was not significantly different 
from Durbin's model. As Pr departs increasingly from unity molecular processes have 
a greater influence on 8'2. In the small-time limit all calculations converge to Corrsin's 
one-particle result (4.5). As would be expected, dissipation increases with decreasing 
Pr . 
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Durbin’s 

It has been suggested by Garrett (1983) that (4.7) is implausible and instead that 
fP+ const. for large t .  This result is based on the semi-empirical relationship (1.2) 
with ee+const. and L, = L. On the other hand, (4.7) implies that the lengthscale 
appropriate to the scalar field at large time is the single-particle spread, i.e. 

- 

Lo - uZ - ti .  (4.8) 

Both Garrett’s (1983) result and (4.7) predict less scalar variance than the one-particle 
result (4.6). Thus both imply mixing of scalar elements as they migrate from the 
source to the measurement point and differ only in the extent to which mixing occurs. 
However there is little point in pursuing this question since the limit is unrealizable. 
Figure 5 ,  for example, shows that (4.7) is approached only after many t ,  and so cannot 
be observed in experimental homogeneous turbulence which decays significantly over 
an integral timescale (see $4.4). 

This ambiguity in the asymptotic form of Lo and 8’2 disappears for the case of 
decaying grid turbulence. Then Lo - L - uz - tl-m and u, - t -m,  which with (4.3) 
or (4.4) implies e0 - t1-2m and so from (1.2), 8’2 - t 2 ( l P m ) .  Because there is only one 
lengthscale in this case both our model and Garrett’s (1983) argument produce the 
same result. With the experimental value m - !j typical of grid turbulence, 8’2 - t ,  
as has been observed experimentally (Sirivat 6 Warhaft 1983). 

4.2. Finite cloud source 
In this section we consider the dispersion of an instantaneously released plane cloud 
of finite thickness. Appropriately interpreted (e.g. through Taylor’s translation 
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hypothesis), our results should be relevant to more practical problems such as the 
dispersion of a continuous plume emitted from an industrial stack. For analytical 
convenience we consider a Gaussian source distribution 

For Durbin’s inertial-range model, Sawford (1983~)  showed that d and C are to a good 
approximation independent (because the factor [2-R(d)y in (2.10) is only a weak 
function of A )  and C is very nearly Gaussian with variance (1 + p )  a;. This approxi- 
mation becomes exact in both the small- and large-time limits. It applies equally well 
to the present model since the factor [2 - R(d)$ remains a weak function of A and 
molecular diffusion is modelled as a Gaussian random process. Substituting from (4.9) 
into (2.4) and using this independence approximation we have 

- 
@ ( z , t )  = [“ [P(d’,t,O,O)P(C’,t; C,O)S(d’)S(Z)dA’W, (4.10) 

J-w J 

where P ( Z ,  t ;  C, 0) is the ‘centre-of-mass’ p.d.f. Using the near-Gaussianity of 
P ( Z ,  t ;  C, 0), (4.10) can be integrated to give 

] Jrn P(d’,  t ;  0’0) S(d’) dd’. 
- 22 

a;+(l+p)a;  -w 
(4.11) 

Thus to this approximation p ( z , t )  is a Gaussian function of z with variance 

The quantity in which we are most interested is the intensity of fluctuations, 
s - = [P/e”]4. Restricting attention to the centreline, z = 0, and using 
O(0, t )  = [2x(4++3]-; which follows from (2.1) for a Gaussian one-point displace- 
ment p.d.f., (4.11) reduces to 

[ 
- 
@(z, t )  =[27c(a; + (1 + p )  a;)]* exp 

aP;+(1+P)a;l. 

This relation is most revealing about the role played by source size in determining 
the intensity of scalar fluctuations. For small time such that aA < a. and aA 4 a, 
(i.e. p x 1) (4.12) reduces to Corrsin’s one-particle result 

a; + a; 
a0(a;+2a2)2 830, t )  = 2 1-1 .  (4.13) 

For large time such that ad no and uA x (T, (i.e. p 4 1) (4.12) reduces to 
rn 

s2(0 , t )  = (27c)*cr2 f P ( d ’ , t ;  O,O)S(d’)dd‘-1. (4.14) 
J --OD 

Then the source function acts as a filter on P(d ,  t ; 0,O) so that only those pairs with 
separations not much larger than a. contribute significantly to the fluctuation field. 
Clearly the asymptotic behaviour of s2(0,t)  is determined by that of 
( 2 ~ ) ;  a, P(A,  t ; 0 , O )  on scales of O(ao) and so will be strongly influenced by molecular 
processes when a. is comparable with the lengthscales T,I or A,. 

Figure 6 (a) shows ~ ~ ( 0 ,  t )  as a function of time for ao/L = 0.01 and 0.2, Re = 103 
and lo5 and Pr = 1, while figure 6 ( b )  shows corresponding calculations for Pr = 0.1, 
1 and 10 at Re = lo3. In both cases calculations for the one-particle model and the 
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FIQURE 6. Squared intensity of fluctuations for plane cloud source (4.9). (-) Durbin's (1980) 
model; (---) Corrsin's (1952) one-particle model. (a) Effect of Re and source size at Pr = 1 ;  ( b )  
effect of Pr and source size at Re = lo3. 

inertial-range model are shown for comparison. Statistics were accumulated over 
N = 3 x lo4 pair trajectories. 

All calculations approach the one-particle result at small times. A t  large times the 
two-point calculations reflect, through (4.14), the asymptotic features of 
(2x) :az  P(d, t ;  0,O). The intensity of fluctuations asymptotes to a constant value as 
a result of the self-preserving, non-Gaussian asymptote of the separation p.d.f. and 
is a function of go, Re and Pr. For fixed Pr the essential parameter determining the 
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extent of departure from the inertial-range model is the lengthscale ratio ‘T,/Y, the 
ratio of the scale on which separations contribute to fluctuations to the scale affected 
by molecular processes. Thus the inertial-range model is increasingly accurate with 
increasing Re and increasing u,. For example, the Re = lo5, u,/L = 0.2 calculation 
in figure 6(a) indicates that  the inertial-range model is accurate to - 10% for 
a,/? - lo3. Departures from the inertial-range model are accentuated as Pr departs 
increasingly from unity but still diminish with increasing Re or u,. We see also from 
figure 6 ( b )  that  for a given range of uo the source-size dependence of s2(0, t )  diminishes 
with decreasing Pr, i.e. with the ratio uo/Ac. I n  fact for uo < A, molecular diffusion 
smooths P(A, t ;  O , O , )  (which is thus independent of A )  over those scales which 
contribute to s2(0, t )  and the source-size dependence is eliminated. For the present 
model then, in contrast to  the inertial-range model (for which s2(0, t )  - (uo/L)-i for 
u, 4 L ) ,  the ‘point-source’ limit is well-defined. 

Finally in this section we consider the dissipation of scalar fluctuations. From the 
Eulerian conservation equation for 82 for the present case in which the scalar field 
is inhomogeneous in the z-direction we have 

(T) = -2K((Ve)2), (4.15) 

where we have used ( ) to  denote the global integral s“ dz. The term on the right 
differs from the global rate of dissipation of scalar flcctuations (€6) by a term 
involving the mean gradient, 2 ~ ( ( V 8 ) ~ ) .  Because this term is negligible a t  high Pe, 
for the cases we consider ( € 8 )  can be calculated to  an excellent approximation from 
the left-hand side of (4.15). I n  fact we calculate the nett global dissipation 

s,” ( E ~ )  dt = (B(0)) - (82(t)). (4.16) 

Figure 7 shows (82(t ) )  as a function of time for Re = lo3 and lo5 and u,/L = 0.01 
and 0.2. The one-particle and inertial-range results are shown as in figure 6(a). The 
most striking feature is that the inertial-range model ‘dissipates ’ scalar fluctuations 
and that i t  accurately predicts the dissipation a t  high Re for u,/L of O(1). Again we 
can refine this requirement to uo/q of O( lo3). Figure 7 basically reflects the departure 
of s2(0, t )  from the one-particle calculation as shown in figure 6(a), so i t  is obvious 
from figure 6 (b )  that  dissipation increases with decreasing Pr. 

I n  summary, the interesting qualitative features of Durbin’s inertial-range model 
are preserved in our extended model in that s2(0, t )  asymptotes to a constant large-time 
limit which is a function of source-size. The important qualitative difference is that 
the source-size dependence is eliminated by molecular diffusion for uo < A,. Durbin’s 
use of marked-particle statistics to  calculate 8’2 for large Re and u0/L of O(1)  for 
Pr = 1 is justified and indeed we have refined the condition on u, and have included 
cases where Pr is not of O( 1 ) .  For small sources, u, - 11 or A,, explicit molecular effects 
cause significant and persistent departures from the inertial-range model. 

4.3. The effect of aJinite sampling volume 
In  the context of the two-point Lagrangian theory, concentration fluctuations over 
a finite sampling volume can be calculated from the statistics of pairs of molecules 
which disperse from within this volume back to the source (i.e. in general with non-zero 
initial separation). Therefore we can discuss the effect of a finite sample in terms of 
modifications to  the point-sample results already obtained by comparing P(A, t ; A,, 0) 
and P(A,  t ;  0,O) where A ,  is a representative separation of pairs of molecules within 
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PIQURE 7. Effect of Re and source size on the global integral of the mean-square scalar field 
(essentially the complement of the nett global dissipation). -, Durbin’s (1980) model; ---, 
Corrsin’s (1952) one-particle model; C ,  Re = los; 0, lob. 

the sample volume. For the inertial-range model we showed in $3 that for sufficiently 
large time (2x)~a,P(A, t ;  d,,O) tends to the self-preserving form R-i(A) on ever- 
increasing scales, independent of A,.  Thus although 8’2 can depend on the sampling 
volume for small times, ultimately it does not. This conclusion can be interpreted 
as a consequence of the fact that the lengthscale of fluctuations increases with time 
according to (4.8) so that the reduction in 8’2 due to averaging over a fixed volume 
eventually is negligible. 

When molecular diffusion and viscosity are explicitly modelled we can no longer 
write an analytic form like (3.1) but we have confirmed numerically that again 
P(A, t ; A,,  0 )  ultimately ‘forgets’ the initial separation A ,  and 8’2 approaches the 
‘point-sample ’ limit. Thus although molecular diffusion affects 8’2 at all times, 
instrumental averaging does not. Note that since A, is the smallest scale on which 
scalar fluctuations occur, in practice the point-sample limit is valid at all times for 
A ,  4 Ac.  Then the first term in (2.25) is negligible compared with the diffusive-growth 
terms. 

That instrumental averaging does not play quite the same role as molecular 
diffusion can also be seen by examining a hypothetical fluid in which K = 0 at some 
finite Re, i.e. the Pr = 03 limit. 

Consider first the ‘point-sample’ case (i.e. the limit A,+O) .  Putting K = 0 in (2.25) 
we see that for any finite time P can be made arbitrarily small by choosing A ,  
sufficiently small, i.e. in the point-sample limit the linear-strain flow field cannot 
separate a pair of particles in a finite time. Consequently the pair always move 

(4.17) 
together and 

so that (2.4) reduces to Corrsin’s one-particle theory, i.e. i t  (and the equivalent 
Eulerian treatment of Chatwin t Sullivan (1979) in which dissipation is ignored) 
correspond to the ‘point-sample’, infinite Pr limit. 

P,(z;, z;, t ;  z,z,O) = PI@;, t ;  2 , O )  s(z;-z;) ,  
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For a finite sample (i.e. finite A,)  (2.25) shows that material points separate even 
in the absence of molecular diffusion. The separation p.d.f. is now given by (3.1) with 
the generalized structure function (2.21). It follows from (2.9) that within the 
dissipation-range limit (2.20) A always remains the same sign as do, i.e. fluid-particle 
trajectories do not cross and P(A, t ; A,, 0) is a one-sided p.d.f. (For finite Pr, molecular 
diffusion causes trajectories to cross.) 

Although we cannot evaluate (3.1) analytically we are able to make order- 
of-magnitude estimates of scalar variance. Equation (3.1) can be integrated (using 
the transformation g = R-k(d) dd) to show that equal numbers of pairs have 
separations greater than and less than do. In fact it  is easily shown that for 
sufficiently large time half the pairs have separations smaller than any arbitrarily 
small value and half have separations greater than any arbitrarily large value. The 
former arises because there is no smoothing due to molecular diffusion and the linear 
velocity field produces increasingly fine structure through the A -’ singularity (3.4). 
At the same time the dispersive action of the energetic eddies generates increasingly 
large separations. Since the large scales determine p (and fine scales contribute 
negligibly) we deduce that asymptotically p++cr;. It follows immediately from 
(4 .2~ )  that for a uniform-gradient source 

(4.18) 

That is, for Pr = 00 where there is no molecular dissipation of scalar variance, half 
of the variance predicted by the one-particle model is eliminated by instrumental 
averaging. This is ultimately true for any finite sampling volume since at sufficiently 
large time half the fluctuation variance occurs on an arbitrarily small scale. 

For the dispersing cloud discussed in 54.2 a similar asymptotic result obtains where 
instrumental averaging eliminates a fixed fraction of the variance predicted by the 
one-particle model, (4.13). 

We conclude that although instrumental averaging reduces the scalar variance in 
the absence of molecular diffusion, its action is not equivalent to molecular diffusion. 
In particular Durbin’s (1980) argument that the smoothing effect of instrumental 
averaging justifies the use of marked-particle statistics to calculate 8’2 is not correct. 

4.4. Timescales for the development of a cloud or plume 
In general the development of scalar fluctuations in a dispersing cloud is controlled 
by the scales of the turbulence crw and L, the molecular properties of the fluid, K and 
v, the lengthscale imposed by the source cro and the distance z of the measurement 
point from the centreline. For simplicity here we consider development along the 
centreline, z = 0. We consider a number of cases according to the magnitude of 
no relative to 7, A, and L. 

Figures 6 and 7 highlight two aspects of the evolution of p, the onset of dissipation 
as indicated by departure from the one-particle result and the approach to the 
large-time asymptote. Here we consider timescales for these processes and for the 
disappearance of a sampling-volume effect. 

It (so) dt = 1 - (2n)f r0 

Consider first the onset of dissipation. From (4.16) and (4.11) 

W 

P(d’ ,  t ;  0,O) S(d’) dd’. (4.19) 
d2(0) 0 
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For p 4 ui the Gaussian source function can be expanded in powers of A’2 to give 

(4.20) 

Thus, as for the homogeneous case with a uniform-gradient source, dissipation is 
intimately connected with relative dispersion. Equation (4.20) shows that nett 
dissipation becomes significant after a time of O(td) when $p is a significant fraction 
of ut, i.e. in the same time it takes for a spot (or ‘point ’ source) to grow to a fraction 
of the actual source size. 

For u, 4 A,, p is dominated by the diffusive-growth term 2 ~ t  (see 2.25) and 

(4.21) 

For A, 4 6, 4 7 (which implies Pr B 1)  the small-time result (2.25) can be 
extended using Saffman’s (1960) linear-strain calculation which gives (for A, = 0) 

(4.22) 

and so td = In i(u,/A,) Re-it,. (4.23) - st3, the well-known 
t3 law (Batchelor 1950) from which 

td  = 4 d (aO/L)’t,. (4.24) 

Within the inertial subrange (q,A,)  4 u, 4 L, we have 

Finally, for u, B L, E - uktt, and 

td ((r;/L2) t,. (4.25) 

The effect of a finite sampling volume diminishes after a time t ,  when relative 
dispersion is comparable with the sample length, i.e. p- A;  - A t .  Application of this 
criterion parallels that for the onset of dissipation and timescales t ,  corresponding 
to (4.21), (4.24) and (4.25) but with u, replaced by A, are easily derived. However 
for A, 4 A, 4 7, dispersion is initially dominated by the linear-strain field acting over 
the separation A, (rather than by molecular diffusion) and proceeds on the timescale 
t,, i.e. t ,  = Re-it,. 

Consider now the approach of p ( 0 ,  t )  (and s2(0, t ) )  to their large-time asymptotes. 
Equations (4.11) or (4.12) show that two timescales are involved. The first, which 
we denote by t,, is that on which P(A, t ;  0,O) approaches its asymptote for 
separations of O(u,).  According to (2.31) all separations within the dissipation 
subrange evolve on the timescale t ,  - Re-it, so that for u, 4 7 and Pr 2 1 

(4.26) t ,  = Re g t , .  

However for Pr + 1, dissipation-subrange structure is not important and molecular 
diffusion interacts directly with the inertial-subrange eddies on the timescale ( K / E ) : .  

Therefore for u, 4 A, and Pr 4 1 
(4.27) 

For inertial-range sources (7, A,) 4 u, 4 L, P(A, t ; 0,O) approaches the large-time 

t, = (uo/Lp t , .  (4.28) 

A 

t , =  Pe A z t , .  

asymptote (3.3) for A of O(u,) when G(u,) - utL4 + uz - u,t, so that 



396 

Finally for large sources, uo 9 L, G(uo)  - c0 9 uz - a,(tt,): implies that 
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t ,  = (ui/L2) t , .  (4.29) 

The second timescale on which P(0,t) evolves is that over which p+O, i.e. the 
integral timescale t,. For small sources and large Re, t ,  4 t ,  and (4.12) shows that 
s2(0, t )  is within a factor of ( 1  +p): < 2/2 of the asymptote (4.13) for t - t,, i.e. s2 
increases rapidly to within < 4 2  of its final value and then evolves more slowly. This 
two-stage evolution is clear in figures 6 and 7 .  I n  the initial stage when t < t,, the 
rapid growth of fluctuations is dominated by bulk motion of the cloud (meandering) 
whereas in the final stage, t 9 t,, fluctuations are produced by internal structure 
within the cloud and the meandering contribution is negligible (Sawford 1 9 8 3 ~ ) .  The 
important point to be made here is that evolution of the intensity of fluctuations along 
the centreline for small sources is essentially complete (to within a factor of 2/2) after 
a time t, much smaller than the integral timescale. 

All the results presented so far in this paper have been for stationary homogeneous 
turbulence. These conditions are well-approximated in the initial stages of dispersion 
in real turbulent flows. However whether or not the large-time asymptotic predictions 
of our model are relevant in such flows depends on the relative magnitudes of the 
timescale t, and that over which the approximation of stationary homogeneous 
turbulence breaks down. 

The effects of non-stationarity or non-homogeneity cannot be ignored when the 
change in any turbulence scale (e.g. At,)  is comparable in magnitude with its value 
at the source ( t L ,  o ) .  For example in grid turbulence t ,  is the most rapidly changing 
scale and varies almost linearly with downstream distance ( x  travel time if the 
streamwise intensity of turbulence is small). Non-stationarity (or streamwise non- 
homogeneity) therefore has a significant effect on dispersion after a time t of o(t,, o ) .  
In  a neutral boundary layer both L and t ,  vary approximately linearly with height 
abovc the boundary. For a small source a t  height H this vertical non-homogeneity 
is no longer negligible when uz = uw t - L(H),  i.e. again when t is of O ( t ,  o ) .  Similarly 
for sheared homogeneous turbulence, L varies approximately linearly with down- 
stream distance so again'non-stationarity is important for t of O(t,, ,J. Note though 
that since the mean shear itself also affects the scalar fluctuations on the timescale 
(au/az)-l (Durbin 1980; Sawford 19833) in this case we also require (au/az) t,, 2 1. 

It follows that the asymptotic predictions of our model are relevant for these real 
flows for small sources and high Re for which t ,  4 tL ,  ,,. In  these circumstances, scalar 
fluctuations in the cloud undergo fairly complete development before the effects of 
mean shear, non-stationarity and non-homogeneity of the turbulence become 
important. This may often be the case in the atmosphere where Re is very large (of 
0(108)) and L may be of O(lOO0 m) (e.g. in the convective boundary layer). The 
situation is less clear in laboratory flows where Re is much lower. 

5. Conclusions 
We have extended Durbin's ( 1980) marked-particle pair-trajectory model in order 

to  examine the effects of molecular diffusion on the scalar fluctuation variance in 
stationary homogeneous turbulence. 

Our conclusions, which focus on the questions raised in the Introduction, are 
broadly independent of the details of the model. 

1. Molecular processes influence the spreading of pairs of molecules from a source 
for all time where their separation is of the order of the velocity or diffusive microscale 
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(7, A,,). However, viscosity and molecular diffusion have opposing eEects - the 
linear-strain turbulence associated with viscous dissipation tends to enhance small- 
scale structure while molecular diffusion smooths and reduces it. 

For both a uniform-gradient source and a dispersing cloud, dissipation of 8’2 is 
intimately connected to relative dispersion and is correctly predicted by marked- 
particle statistics a t  a large enough large Re. Molecular processes affect the dissipation 
when Pr is much greater than or less than 1 .  But for finite Pr, marked-particle 
statistics are still correct at large enough large Re, as can be seen from figures 6 and 7 .  

2. The intensity of scalar fluctuations, s = [8’2/@]4, tends to a constant value when 
t is large. Thus molecular processes do not eliminate the persistent streaky structure 
predicted by Durbin’s model for clouds of contaminant. 

3. For small sources (a, of O(7,  A,,), 8’2 is determined by the small-scale structure 
controlled by molecular processes and so also depends on K and v for all time (figure 
6). As a corollary, 8’2 is independent of K and v for a, 9 (7, A,) a t  high Re for fixed 
a,/L and is therefore controlled by the statistics of marked particles. Thus the 
source-scale dependence, (1.5b), of Durbin’s model is retained for a, 9 (7, A c ) .  

4. Our results emphasize the importance of Durbin’s (1980) ‘outer limit ’ when 
using marked-particle statistics to calculate 8’2 at finite Pr. Essentially this means 
that in neglecting molecular diffusion (by using marked-particles) one must also 
neglect viscous dissipation (i.e. the turbulence must be modelled as having an inertial 
subrange extending to  infinitely small scales). At infinite Pr where molecular diffusion 
is zero but viscous-dissipation-range structure of the turbulence is retained, we show 
that in the ‘point-sample’ limit the 2-point theory reduces to Corrsin’s (1952) 
one-particle analysis which is equivalent to Chatwin & Sullivan’s (1979) Eulerian 
analysis with efl = 0. Instrumental averaging reduces 8’2 in this case but unlike 
molecular diffusion does not counter the tendency of the linear-strain turbulence to 
generate increasingly fine-scale structure. 

5.  Timescales for the development of 8’2 in a dispersing cloud depend on a, and, 
for small sources (a, 4 L )  and high Re, are much smaller than t,. We showed that 
many real flows evolve on the timescale t ,  so that the present results for stationary 
homogeneous turbulence are relevant to such flows for small sources and large Re. 
The inertial-range timescales (4.25) or (4.29) agree with Fackrell & Robins’ (1982) 
measurements from small elevated sources in a wind-tunnel boundary layer which 
show that 8’2 develops downstream on a timescale proportional to 4.’. 

6. The reduction in 8’2 due to instrumental averaging over a finite sampling volume 
is negligible once the relative dispersion process ‘forgets ’ the initial separation A ,  
imposed by the sampling volume. I n  other words instrumental averaging does not 
have the same effect as molecular diffusion in reducing 8’2. The physical reason for 
this is that  there is an  increase in the lengthscale of scalar fluctuations with time so 
that the proportion of variance contained on scales of O(A,) is eventually negligible. 
Estimates of the timescale t ,  on which sampling effects are eliminated were given 
in $4.4, the most noteworthy point being that t, 4 t ,  for A ,  4 L. 

Some of our other findings are more dependent on the details of Durbin’s (1980) 
model (and our extension). While i t  is possible to  criticize the details of these models 
(for example the treatment of only one component of the turbulence) we note that 
our extended model reproduces the known exact three-dimensional results a t  small 
time and the exact results for a uniform-gradient scalar field and that the reversed- 
diffusion formalism compensates for the lack of a compressibility constraint. I n  
addition, as outlined in the Introduction, there is some support for the predictions 
of Durbin’s model from wind-tunnel experiments. Qualitatively these predictions are 
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not strongly altered by molecular diffusion. Our results for the uniform-gradient 
source are consistent with the continued growth B’e - d at large time as predicted 
by Durbin’s (1980) model. For a dispersing cloud the intensity of fluctuations is still 
predicted to be constant at large time (as was assumed by Csanady 1973) even for 
small sources when molecular effects are important. The major qualitative effect of 
molecular processes is the elimination of the source-size dependence of s for go < A,. 
This regularizes the ‘point-source’ limit and is likely to be a more general result. 

B.L.S. was supported while at Cambridge in part by a grant from the Natural 
Environmental Research Council. We are grateful for comments on the paper by 
Dr P. A. Durbin, Professor P. C. Chatwin and the referees. 

Appendix. Derivation of (2.2) 
Consider a volume of fluid (As)3 about the point x which, a t  the measurement time 

t ,  contains N molecules, N ,  of which are labelled.? Then the proportion (specific 
concentration) of labelled molecules in the volume at (5, t )  is 

where yt = 1 for a labelled molecule and 7, = 0 for an unlabelled molecule. Note that 
for elemental volumes, Ax 4 A,, the smallest scale over which the concentration 
varies, @(x, t )  can be regarded as the instantaneous concentration at the point x. 

We calculate the concentration covariance for two separated points (x,, t )  and (x,, t )  
for an instantaneous source distribution, S(x) released at  time 0. (Extension to more 
general cases is straightforward.) The instantaneous concentration product is 

I N  

Consider an arbitrary pair of molecules 1,2 (one from each volume) which may or 
may not be - labelled. Clearly, from A 2 ,  the required covariance @(x,,t)O(x,,t) is 
related to y1y2, the probability that both molecules are labelled. We evaluate this 
probability in two stages using the reversed-diffusion concept illustrated in figure 
1 (a). 

It is given that 1,2  are ‘at ’ x, and x, at time t and we ask what is the probability 
that they are labelled if they came from elemental volumes about the points xi and 
x; at time 0. Since the labelling of one molecule has no influence on the labelling of 
the other, and since at time 0 labelled molecules are distributed according to  the 
source function, the conditional labelling covariance is just 

The second stage of our calculation is to express the unconditional labelling 
covariance as the convolution of the conditional covariance (A 3) and the joint p.d.f. 
that molecules 1,2 came from xi and x; at time 0 (given that they are at  x,, x2 at 
time t ) ,  P,(xi, x;,O; x,, x,, t ) .  Thence 

= I P,(Xi, 4 , o ;  x,, x22 t )  &xi) m;) h i  dx;. (A 4) 

t The tern ‘labelled’ is used to denote contaminant species, while the term ‘marked’ is reserved 
to indicate the set of molecules in whose displacement statistics we are interested, i.e. in this case 
all molecules in ( 4 ~ ) ~ .  
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This is the required result since for elemental volumes all pairs are statistically 
equivalent so that the sum in (A 2) is trivial. (A 4) reduces to (2.2) for a plane source 
distribution. 

For a finite sampling volume, the statistics of any given pair depend on their 
locations within the volumes and averaging over pairs according to (A 2) must be 
carried out explicitly. 
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